A transfer principle from Wiener to Poisson space

نویسنده

  • Nicolas Privault
چکیده

The aim of this work is to construct the stochastic calculus of variations on Poisson space and some of its applications via the stochastic analysis on Wiener space. We define a new gradient operator on Wiener space, whose adjoint extends the Poisson stochastic integral. This yields a new decomposition of the Ornstein-Uhlenbeck operator and a substructure of the standard Dirichlet structure on Wiener space, with applications to stochastic analysis on Poisson space and infinite-dimensional analysis for the exponential density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

Cumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals

The classical combinatorial relations between moments and cumulants of random variables are generalized into covariance-moment identities for stochastic integrals and divergence operators. This approach is based on cumulant operators defined by the Malliavin calculus in a general framework that includes Itô-Wiener and Poisson stochastic integrals as well as the Lie-Wiener path space. In particu...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

A stochastic Poisson structure associated to a Yang-Baxter equation

We consider a simple solution of a Yang-Baxter equation on loop algebra and deduce from it a Sklyanin Poisson structure which operates continuously on a Sobolev test algebra on the Wiener space of the Lie algebra. It is very classical that the solution of the classical Yang-Baxter equation on a finite dimensional algebra gives a Poisson structure on the algebra of smooth function on the finite ...

متن کامل

N ov 2 00 8 Poincaré Inequality on the Path Space of Poisson Point Processes ∗

The quasi-invariance is proved for the distributions of Poisson point processes under a random shift map on the path space. This leads to a natural Dirichlet form of jump type on the path space. Differently from the O-U Dirichlet form on the Wiener space satisfying the log-Sobolev inequality, this Dirichlet form merely satisfies the Poincaré inequality but not the log-Sobolev one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009